skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wood, Tana_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT It is unclear how plants respond to increasing temperatures. Leaf heat tolerance (LHT) is often at its upper limit in tropical forests, suggesting that climate change might negatively impact these forests. We hypothesized that intraspecific variation in LHT might be associated with changes in the soil microbiome, which might also respond to climate. We hypothesized that warming would increase LHT through changes in the soil microbiome: we combined an in situ tropical warming experiment with a shade house experiment in Puerto Rico. The shade house experiment consisted of growing seedlings ofGuarea guidonia, a dominant forest species, under different soil microbiome treatments (reduced arbuscular mycorrhizal fungi, reduced plant pathogens, reduced microbes, and unaltered) and soil inoculum from the field experiment. Heat tolerance was determined using chlorophyll fluorescence (FV/Fm) on individual seedlings in the field and on groups of seedlings (per pot) in the shade house. We sequenced soil fungal DNA to analyze the impacts of the treatments on the soil microbiome. In the field, seedlings from ambient temperature plots showed higherFV/Fmvalues under high temperatures (0.648 at 46°C and 0.067 at 52°C) than seedlings from the warming plots (0.535 at 46°C and 0.031 at 52°C). In the shade house, the soil microbiome treatments significantly influenced the fungal community composition and LHT (TcritandFV/Fm). Reduction in fungal pathogen abundance and diversity alteredFV/FmbeforeT50for seedlings grown with soil inoculum from the warming plots but afterT50for seedlings grown with soil inoculum from the ambient plots. Our findings emphasize that the soil microbiome plays an important role in modulating the impacts of climate change on plants. Understanding and harnessing this relationship might be vital for mitigating the effects of warming on forests, emphasizing the need for further research on microbial responses to climate change. 
    more » « less
  2. Abstract Cyclonic storms, or hurricanes, are expected to intensify as ocean heat energy rises due to climate change. Ecological theory suggests that tropical forest resistance to hurricanes should increase with forest age and wood density. However, most data on hurricane effects on tropical forests come from a limited number of well‐studied long‐term monitoring sites, restricting our capacity to evaluate the resistance of tropical forests to hurricanes across broad environmental gradients.In this study, we assessed whether forest age and aridity mediate the effects of hurricanes Irma and Maria in Puerto Rico, Vieques and Culebra islands. We leveraged functional trait data for 410 tree species, remotely sensed measurements of canopy height and cover, along with data on forest stand characteristics of 180 of 338 forest monitoring plots, each covering an area of 0.067 ha. The plots represent a broad mean annual precipitation (MAP) gradient from 701 to 4598 mm and a complex mosaic of forest age from 5 to around 85 years since deforestation.Hurricanes resulted in a 25% increase in basal area mortality rates, a 45% decrease in canopy height and a 21% reduction in canopy cover. These effects intensified with forest age, even after considering proximity to the hurricane path. The links between forest age and hurricane disturbances were likely due the prevalence of tall canopies.Tall forest canopies were strongly linked with low community‐weighted wood density (WD). These characteristics were on average more common in moist and wet forests (MAP >1250 mm). Conversely, dry forests were dominated by short species with high wood density (WD > 0.6 g cm−3) and did not show significant increases in basal area mortality rates after the hurricanes.Synthesis. Our findings show that selection towards drought‐tolerant traits across aridity gradients, such as short stature and dense wood, enhances resistance to hurricanes. However, forest age modulated responses to hurricanes, with older forests being less resistant across the islands. This evidence highlights the importance of considering the intricate links between ecological succession and plant function when forecasting tropical forests’ responses to increasingly strong hurricanes. 
    more » « less
  3. Abstract Tropical forests are expected to experience unprecedented warming and increases in hurricane disturbances in the coming decades; yet, our understanding of how these productive systems, especially their belowground component, will respond to the combined effects of varied environmental changes remains empirically limited. Here we evaluated the responses of root dynamics (production, mortality, and biomass) to soil and understory warming (+4°C) and after two consecutive tropical hurricanes in our in situ warming experiment in a tropical forest of Puerto Rico: Tropical Responses to Altered Climate Experiment (TRACE). We collected minirhizotron images from three warmed plots and three control plots of 12 m2. Following Hurricanes Irma and María in September 2017, the infrared heater warming treatment was suspended for repairs, which allowed us to explore potential legacy effects of prior warming on forest recovery. We found that warming significantly reduced root production and root biomass over time. Following hurricane disturbance, both root biomass and production increased substantially across all plots; the root biomass increased 2.8‐fold in controls but only 1.6‐fold in previously warmed plots. This pattern held true for both herbaceous and woody roots, suggesting that the consistent antecedent warming conditions reduced root capacity to recover following hurricane disturbance. Root production and mortality were both related to soil ammonium nitrogen and microbial biomass nitrogen before and after the hurricanes. This experiment has provided an unprecedented look at the complex interactive effects of disturbance and climate change on the root component of a tropical forested ecosystem. A decrease in root production in a warmer world and slower root recovery after a major hurricane disturbance, as observed here, are likely to have longer‐term consequences for tropical forest responses to future global change. 
    more » « less